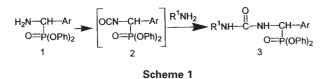
SHORT PAPER

A convenient synthesis of α -ureidomethylphosphonates with heterocycle moiety[†] Zai-Guo Li and Run-Qiu Huang^{*}


Institute and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China

Some novel heterocycle-substituted α -ureidoalkylphosphonates **3** have been synthesised through the reaction of α -isocyanatoalkylphosphonates with heterocyclic amines.

Keywords: phosphonate esters, ureas, isocyanates, α -aminophosphonates

As isosteres of aminocarboxylic acids, α -aminoalkylphosphonic acid derivatives have attracted an increasing amount of attention in the past two decades because some of them are of considerable chemical and pharmacological importance.¹ Some derivatives of α -aminoalkylphosphonic acid can also serve in agrochemistry as fungicides,² herbicides,³ plant regulators⁴ and plant virucides.⁵ In our previous work, we have synthesised two series of α -aminoalkylphosphonates with pyrazole⁶ or benzothiazole⁷ moiety, which showed significant anti-TMV (tobacco mosaic virus) activity. As part of our ongoing program and interesting in the development of new biologically active organophosphorus compounds, we decided to synthesise some N'-heterocycle-substituted α -ureidoalkylphosphonates **3**.

The general method for synthesis of substituted α -ureidoalkylphosphonates is the three component reaction of substituted ureas, aldehydes (ketones) and trivalent phosphorus compounds.^{8,9} Since the synthetic methods and reactivity of different heterocycle-substituted ureas are variable, the synthesis of **3** by a three-component reaction can be laborious and unpredictable. In this article we report a convenient method for the synthesis of substituted α -ureidoalkylphosphonates **3** (Scheme 1).

The easily available α -aminoalkylphosphonates 1^{10} were treated with triphosgene to give 2 in mild conditions. Because they are very sensitive to moisture, the isocyanates 2 were not purified and their presence was revealed by their characteristic IR absorption, the very strong band of N=C=O at approximately 2240 cm⁻¹. To accomplish the complete conversion of 1 into 2 a slight excess of triphosgene was used. Through further addition of 0.85 molar of heterocyclic amines to 2 in one pot, 3 were obtained in good to high yields. The structures and physical data of compounds 3 are listed in Table 1.

The preparation of **3** by treating **1** with heterocyclic isocyanates R^1NCO seems applicable, but attempts to obtain various R^1NCO under a unique set of reaction conditions proved to be unsuccessful. **Table 1**The structures and physical data of **3a-3h**

No.	Ar	R ¹	yield/%	m.p./°C
3a	Ph	2-pyridyl	81	150–152
3b	2-CIC ₆ H₄	4-antipyryl*	58	101–103
3c	3-NO ₂ Č ₆ H ₄	4-antipyryl	40	96–98
3d	Ph	4-antipyryl	67	92–94
3e	Ph	4,6-dimethyl-2-pyrimidyl	73	120–122
3f	2-CIC ₆ H₄	4,6-dimethoxy-2-pyrimidy	rl 61	149–151
3g	Ph	2-benzothiazolyl	69	168–170
3h	2-CIC ₆ H ₄	2-thiazolyl	82	167–169
*4-antipyryl: H_3C H_3C N_N Ph				

Experimental

 α -Aminoalkylphosphonates 1^{10} and triphosgene¹¹ were prepared according to reported procedures.

Diphenyl aryl(N^3 -heterocyclylureido)methylphosphonates (**3a–h**): To a solution of triphosgene (1.78 mmol) in 5ml dichloromethane, a solution of α -aminoalkylphophonate **1** (3.68 mmol) and triethylamine (18 mmol) in 10ml dichloromethane was added dropwise below –10 °C during 30 minutes. The resulted mixture was stirred for additional 30 minutes at –10 °C and warmed spontaneously to room temperature, then a solution of heterocyclic amine (3.13 mmol) in 15 ml dichloromethane was added. The solvent was removed under vacuum after the mixture stirred at room temperature for 3 hours. The residue was dissolved in ethyl acetate and filtered, then the filtrate was evaporated and purified by chromatography on silica gel to give **3** as a white solid. The structures of the substituents in the products **3**, and their melting-points and yields, are listed in Table 1.

3a: ¹H NMR (δ , ppm): 6.00(q, 1H), 6.75–8.25(m, 19H), 9.26(s, 1H), 10.76(br, 1H). ¹³C NMR (δ , ppm): 51.5(d, *J*=156Hz), 112.5, 117.0, 120.4, 125.0, 128.1, 128.5, 129.4, 134.6, 138.6, 145.3, 150.3, 152.7, 155.7. IR (v/cm⁻¹): 767, 939, 1183, 1207, 1488, 1561, 1591, 1684, 3222, 3403. MS(M⁺ 459): 366, 285, 233, 226, 209, 132, 131, 106(100%), 77. Found: C, 65.31; H, 4.95; N, 9.13%. C₂₅H₂₂N₃O₄P requires C, 65.36; H, 4.83; N, 9.15%.

3b: ¹H NMR (δ , ppm): 2.17(s, 3H), 3.01(s, 3H), 6.33(dd, 1H), 6.95–7.50(m, 19H), 7.82(br, 1H), 8.15(br, 1H). ¹³C NMR (δ , ppm): 11.5, 35.4, 48.4(d, *J*=160Hz), 109.0, 120.3, 120.7, 125.0, 127.3, 127.7, 129.4, 133.1, 133.5, 148.3, 150.3, 155.9, 160.1. IR (v/cm⁻¹): 758, 933, 1180, 1206, 1487, 1588, 1623, 1696, 3050, 3306. MS(M⁺ 602): 508, 473, 352, 276, 229, 213, 166, 140, 94, 77, 56(100%). Found: C, 61.45; H, 4.56; N, 9.00 %. C₃₁H₂₈ClN₄O₅P requires C, 61.75; H, 4.60; N, 9.29%.

3c: ¹H NMR (δ , ppm): 2.20(s, 3H), 3.08(s, 3H), 5.78(dd, 1H), 7.05–8.52(m, 19H), 8.56(br, 1H). Found: C, 60.62; H, 4.69; N, 11.15%. C₃₁H₂₈N₅O₇P requires C, 60.69; H, 4.60; N, 11.41%.

^{*} To receive any correspondence. E-mail: lizaiguo@public.tpt.tj.cn

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

³d: ¹H MÅR (δ, ppm): 2.12(s, 3H), 2.94(s, 3H), 5.83(dd, 1H), 6.96–7.33(m, 20H), 7.75(br, 1H), 8.13(s, 1H). Found: C, 65.42; H, 5.30; N, 9.87%, C₂₁H₂₀N₄O₂P requires C, 65.49; H, 5.14; N, 9.85%.

 $[\]begin{array}{l} 5.30; N, 9.87\%, C_{31}H_{29}N_4O_5P \ requires C, 65.49; H, 5.14; N, 9.85\%, \\ \textbf{3e:} \ ^1H \ NMR \ (\delta, \ ppm): \ 2.38(s, \ 6H), \ 5.87(q, \ 1H), \ 6.62(s, \ 1H), \\ 6.93-7.54(m, \ 15H). \ Found: \ C, \ 63.79; \ H, \ 5.31; \ N, \ 11.56\%, \\ C_{26}H_{25}N_4O_4P \ requires C, \ 63.93; H, \ 5.16; \ N, \ 11.47\%. \end{array}$

3f: ¹H NMR (δ, ppm): 3.91(s, 6H), 5.68(s, 1H), 6.50(q, 1H), 6.80-7.60(m, 14H). MS (M+ 554): 461, 321, 306, 182, 166, 154, 140(100%), 94, 77. Found: C, 56.25; H, 4.39; N, 10.03%. C₂₆H₂₄ClN₄O₆P requires C, 56.28; H, 4.36; N, 10.10%.

3g: ¹H NMR (δ, ppm): 5.81(q, 1H), 6.90–7.92(m, 19H), 8.38(d, 1H), 10.55(br, 1H). Found: C, 62.93; H, 4.45; N, 8.21%. $C_{27}H_{22}N_3O_4PS$ requires C, 62.91; H, 4.30; N, 8.15%.

3h²¹H NMR (δ, ppm): 6.53(q, 1H), 6.81–7.46(m, 16H), 7.97(br, 1H), 9.90(br, 1H). Found: C, 55.00; H, 3.96; N, 8.36%. C₂₃H₁₉ClN₃O₄PS requires C, 55.26; H, 3.83; N, 8.41%.

We thank the National Natural Science Foundation of China (grant no. 29832050) for financial support.

Received 15 February 2001; accepted 16 August 2001 Paper 01/745

References

- 1 M. Borloo, X.Y. Jiao, H. Wojtowicz, P. Rajan, C. Verbruggen, K. Augustyns and A. Haemers, Synthesis, 1995, 1074.
- 2
- G. Gruszeeha and M. Soroka, *Pol. J. Chem.* 1979, **53**, 2327.
 T. Takematsu, M. Konni, K. Tachibana, T. Tsuruoka, S. Inouye 3 and T. Watanabe, Ger. Offen. 2856260 (1979) (CA 91, 103741a).
- 4 F.A. Hartman, Ger. Offen. 2424135 (1974) (CA 82, 150519h).
- 5 Q. Dai and R.Y. Chen, J. Heteroatom Chem. 1997, 8, 203.
- 6 Z.G. Li, R.Q. Huang, R.L. Shao, Z. Yang and H.Y. Li Phosphorus Sulfur and Silicon, 1999, 155, 137.
- 7 Z.G. Li, R. Q. Huang, Z. Yang and H.Y. Li, *Chem. J. Chinese Universities*, 1998, **19**, 1970 (*CA* **130**, 237623w).
- 8 G.H. Biram, J. Org. Chem. 1974, 39, 209.
- Q. Dai and R.Y. Chen, Chem. J. Chinese Universities, 1997, 18, 64 (CA 128, 115004h).
- 10 J. Oleksyszyn, Synthesis, 1979, 985.
- 11 H. Eckert and B. Forster, Angew. Chem. Int. Ed. Engl. 1987, 26, 894.